
Search
IBM : Developer : XML : Library - papers

Building an XML application, step 1: Writing a DTD
Doug Tidwell
IBM XML Technical Strategy Group, TaskGuide Development
Updated January 1999

Download it now!
PDF (30KB)
Free Acrobat™ Reader

Abstract

One of the main tasks in creating an XML application is writing a Document Type Definition (DTD). The DTD lets
us define the different pieces of data we plan to model, along with the relationships between them. The ability to
include this semantic information is the source of XML's power, and its main advantage over HTML. In this paper,
we'll build a DTD as the first step in building an XML application; future papers will expand on this work.

Mary, Mary, quite contrary, how does your data grow?

When writing a DTD, the first place to start is with your data in its current form. How are your data items arranged
currently? Are they in a relational database? In a flat file? On yellow sticky notes plastered to your wall? If you
don't have much data, or your data is in an easily manipulatable format, you may be able to restructure your data
source to make the job of writing your XML application easier. On the other hand, if you have lots of data, or your
current format is inconvenient, you'll probably have to use your data as is.

Sample database structure

For our examples in this paper, we'll create an XML application for the Xtreme Travel Agency, a company
specializing in outdoor tours for the active/foolhardy set. This paper involves creating a DTD for the data specified
in the flights database. The structure of the database is shown in the following table:

Structure of Database Table flights

Column Name Sample Data Column Name Sample Data

id 0001 DepartFrom_1 Chicago

DepartFrom_2 Palm Springs DepartTime_1 January 10 1999 6:30 AM

DepartTime_2 January 15 1999 11:50 AM ArriveIn_1 Palm Springs

ArriveIn_2 Chicago ArriveTime_1 January 10 1999 11:03 AM

ArriveTime_2 January 15 1999 9:24 PM Airline_1 American #303

Airline_2 American #1250

Note : The id field is ignored in this and all further papers about this sample database. The field
simply provides a unique key for each record in the database.

Taking a look at our database, there are several troubling things. One is that several fields contain more than one
piece of information. For example, the DepartTime_1 field contains both the date and time of the departing flight.
If we want to look at the starting time and ending time of the flight to calculate the duration of the flight, there's no
reliable way to do that. There also seems to be some redundant information (DepartFrom_2 and ArriveIn_1
always have the same value, for example).

One of the first questions we would ask is whether any of these concerns affect the data we want to model in our

1 of 8 7/15/99 9:24 AM

Developers : XML : Library - Papers http://www.software.ibm.com/developer/library/buildappl/writedtd.html

application. If so, it's worth finding out if we can change the structure of the database. Most likely, however,
changes to the database won't be allowed, and we'll have to live with what we have.

Modeling Our Data

Assuming that we can't change the database, our first step will be to create a simple DTD that mirrors the structure
of the database. We've already listed the fields that make up each record in the flights table. There are some
other rules we can state about the database:

The table we're concerned with is called flights .
Each record in the flights database represents a complete itinerary: an outbound flight and a returning
flight.
For each itinerary, there are ten fields, the names of which are listed in the previous table.

As a first pass at a DTD, we'll create the tags <flights> , <itinerary> , etc., specifying the relationships
among items we just outlined. Before we do that, we'll discuss the basics of DTD syntax.

DTD Basics

Each statement in a DTD uses the <!XML DTD> syntax. This syntax begins each instruction with a left angle
bracket and an exclamation point, and ends it with a right angle bracket. (The fact that an XML DTD isn't specified
in XML is being addressed by several proposals, including the Document Content Description specification from
IBM, Textuality, and Microsoft.) As we mentioned earlier, our first pass at a tag set will look like this:

 <flights>
 <itinerary>
 <departFrom_1 />
 <departTime_1 />
 <arriveIn_1 />
 <arriveTime_1 />
 <airline_1 />
 <departFrom_2 />
 <departTime_2 />
 <arriveIn_2 />
 <arriveTime_2 />
 <airline_2 />
 </itinerary>
 </flights>

Defining a Document Element

Our document element, the outermost tag, will be the <flights> tag:

 <! ELEMENT flights (itinerary)+>

The element declaration defines the name of the tag (flights , in this case), and the content model for the tag.
The + notation above means the <flights> tag must contain one or more <itinerary> tags.

XML Occurrence Indicators

In addition to the plus sign from our previous example, there are other occurrence indicators:

2 of 8 7/15/99 9:24 AM

Developers : XML : Library - Papers http://www.software.ibm.com/developer/library/buildappl/writedtd.html

XML Occurrence Indicator

Indicator Meaning

? The content must appear either once, or not at all.

* The content can appear one or more times, or not at all.

+
The content must appear at least once, and may appear more than
once.

[none] The content must appear once, exactly as described.

These indicators can be combined with parentheses in any order to create complex expressions. For example, if
element x is defined with the content model

 <! ELEMENT x (a, (b | c | d), e)*>

all of the following are valid:

 <x>
 <a />

 <e />
 </x>

 <x>
 <a />
 <d />
 <e />
 </x>

 <x>
 <a />
 <c />
 <e />
 <a />
 <c />
 <e />
 </x>

 <x>
 <a />

 <e />
 <a />
 <c />
 <e />
 <a />
 <d />
 <e />
 </x>

 <x>
 </x>

Defining More Tags

We've already decided that for our first DTD, we'll simply describe the format of the database. That means we'll
define a tag for each field in the row. We'll also rename some of the tags to better reflect their content. Because
rows are represented by the <itinerary> tag, we'll include all of the field tags:

 <! ELEMENT itinerary (outbound-depart-from, outbound-depart-time,
 outbound-arrive-in, outbound-arrive-time, outbound-airline,
 returning-depart-from, returning-depart-time, returning-arrive-in,
 returning-arrive-time, returning-airline)>

Notice that the definition of the itinerary element doesn't use any occurrence indicators; this means that the
elements must occur in exactly this order, and will occur only once.

Now that we've defined the tag that contains the data for each row in the database, we can start defining the
individual tags. Each of these ten tags will look like this:

 <! ELEMENT outbound-depart-from (#PCDATA)>
 <! ELEMENT outbound-depart-time (#PCDATA)>
 ...

3 of 8 7/15/99 9:24 AM

Developers : XML : Library - Papers http://www.software.ibm.com/developer/library/buildappl/writedtd.html

The #PCDATA keyword above means that the tag contains parsed character data; this means that the XML parser
will find only character data, no tags or entity references (more about these in a minute). There are other
keywords, such as EMPTY, which means the tag can't contain anything, and ANY, which means the tag can
contain text, other tags, entity references, etc.

Our DTD - Version 1

Our completed DTD is shown below.

 <!-- flights.dtd -->
 <! ELEMENT flights (itinerary)+>

 <! ELEMENT itinerary (outbound-depart-from, outbound-depart-time,
 outbound-arrive-in, outbound-arrive-time, outbound-airline,
 returning-depart-from, returning-depart-time, returning-arrive-in,
 returning-arrive-time, returning-airline)>

 <! ELEMENT outbound-depart-from (#PCDATA)>
 <! ELEMENT outbound-depart-time (#PCDATA)>
 <! ELEMENT outbound-arrive-in (#PCDATA)>
 <! ELEMENT outbound-arrive-time (#PCDATA)>
 <! ELEMENT outbound-airline (#PCDATA)>
 <! ELEMENT returning-depart-from (#PCDATA)>
 <! ELEMENT returning-depart-time (#PCDATA)>
 <! ELEMENT returning-arrive-in (#PCDATA)>
 <! ELEMENT returning-arrive-time (#PCDATA)>
 <! ELEMENT returning-airline (#PCDATA)>

Other Things You Can Put in a DTD

There are a number of other things you can put in a DTD; the most common are attribute declarations and entity
references.

Attribute Declarations

Attribute declarations allow you to define the attributes that can appear inside a tag, as well as the kinds of data
the attributes can contain.

As an example, let's say that we don't like the structure of the <outbound-airline> and
<returning-airline> tags. These tags typically contain data about the airline and the flight number. We've
decided that we can reliably parse out the airline and the flight number; the airline number will be the text of the
tag, and the flight number will be an attribute inside the tag itself. Here are the definitions for the new tags and their
attributes:

 <! ELEMENT outbound-airline (#PCDATA)>
 <! ATTLIST outbound-airline flightNum CDATA #REQUIRED>
 <! ELEMENT returning-airline (#PCDATA)>
 <! ATTLIST returning-airline flightNum CDATA #REQUIRED>

The #REQUIRED keyword in the attribute definition means that this attribute must be coded for each and every
<outbound-airline> and <returning-airline> tag in your document. If an attribute isn't required, you
can use the #IMPLIED keyword.

4 of 8 7/15/99 9:24 AM

Developers : XML : Library - Papers http://www.software.ibm.com/developer/library/buildappl/writedtd.html

Another type of attribute definition allows you to specify a set of valid values, along with a default. As an example,
let's say Xtreme Travel only deals with several airlines, and we've decided that the airline name should be an
attribute of the <outbound-airline> and <returning-airline> tags. Here are the definitions for the new
tags:

 <! ELEMENT outbound-airline (EMPTY)>
 <! ATTLIST outbound-airline flightNum CDATA #REQUIRED
 carrierName (Alitalia | American | Delta |
 Northwest | Pacific |
 TWA | United) "American">
 <! ELEMENT returning-airline (EMPTY)>
 <! ATTLIST returning-airline flightNum CDATA #REQUIRED
 carrierName (Alitalia | American | Delta |
 Northwest | Pacific |
 TWA | United) "American">

In this somewhat ill-conceived example, the attribute carrierName can have only certain values, all of which are
listed in the attribute definition. If no value is specified, the default is American . Also notice that because all of the
data contained in these tags is now in the attributes, we used the EMPTY keyword to specify that these tags don't
have any content.

Tags or Attributes?

One common question in DTD writing is whether something should be a tag or an attribute. A third approach to our
current example would be to create <flightNumber> and <carrierName> tags inside the
<outbound-airline> and <returning-airline> tags:

 <outbound-airline>
 <flightNumber>330</flightNumber>
 <carrierName>American</carrierName>
 </outbound-airline>

In most cases, the tags versus attributes decision doesn't make any difference. However, if the data we're
modelling needs to be reused, data in tags is easier to access. As an example, say the flight number returned by a
database query needs to be used as input into another query. Finding and reusing a <flightNumber> tag is
much easier than finding and reusing the flightNumber attribute of the <outbound-airline> tag.

Delivering Data in a More Useful Format

As we mentioned earlier, one problem with the underlying database is that it stores the dates and times of the
flights as simple text strings. To get around this problem, we will make sure that text is a valid date, then send the
parts of that date as XML attributes. This makes it easy for anyone parsing our XML-tagged data to determine
exactly what date and time are represented by this markup. Consider these two examples:

 <outbound-arrive-time>January 10 1999 1:03 PM</outbound-arrive-time>

 <outbound-arrive-time year="1999" month="1"
 day="10" hour="13" minute="3" />

The second example has two major advantages:

1. It is very easy to get any component of the date and time.
2. Converting from one format to another (from "January 10 1999 1:03 PM " to "13:03 10 January

5 of 8 7/15/99 9:24 AM

Developers : XML : Library - Papers http://www.software.ibm.com/developer/library/buildappl/writedtd.html

1999 ," for example) is very easy as well.

For now, we'll simply define the attributes required by this markup design; our next topic will discuss parsing the
existing data to create the tags. To further simplify our design, we'll use values of the hour attribute from 0 to 23 to
indicate all the hours of the day, rather than including an am-pm attribute. If the date format we're using needs an
AM or PM, we'll be able to determine that from the value of the hour attribute.

Our new declaration for the time-related tags looks like this:

 <! ELEMENT outbound-depart-time (EMPTY)>
 <! ATTLIST outbound-depart-time year CDATA #REQUIRED
 month CDATA #REQUIRED
 day CDATA #REQUIRED
 hour CDATA #REQUIRED
 minute CDATA #REQUIRED>
 <! ELEMENT outbound-arrive-time (EMPTY)>
 <! ATTLIST outbound-arrive-time year CDATA #REQUIRED
 month CDATA #REQUIRED
 day CDATA #REQUIRED
 hour CDATA #REQUIRED
 minute CDATA #REQUIRED>
 <! ELEMENT returning-depart-time (EMPTY)>
 <! ATTLIST returning-depart-time year CDATA #REQUIRED
 month CDATA #REQUIRED
 day CDATA #REQUIRED
 hour CDATA #REQUIRED
 minute CDATA #REQUIRED>
 <! ELEMENT returning-arrive-time (EMPTY)>
 <! ATTLIST returning-arrive-time year CDATA #REQUIRED
 month CDATA #REQUIRED
 day CDATA #REQUIRED
 hour CDATA #REQUIRED
 minute CDATA #REQUIRED>

Entity Declarations

The last thing we'll add to our DTD is an entity declaration. Entities allow you to define symbols that are replaced
by other text before they're displayed to the user. Here's an entity that defines the symbol &xt; as equivalent to
the name "Xtreme Travel."

 <! ENTITY xt "Xtreme Travel">

Markup such as Welcome to &xt;! will be rendered as Welcome to Xtreme Travel! If you use an entity
for a common word or phrase, such as a product name, you can change all occurrences of that word or phrase
simply by changing the entity declaration.

Our Final DTD

Here's our final DTD:

6 of 8 7/15/99 9:24 AM

Developers : XML : Library - Papers http://www.software.ibm.com/developer/library/buildappl/writedtd.html

 <!-- flights.dtd -->
 <! ELEMENT flights (itinerary)+>

 <! ELEMENT itinerary (outbound-depart-from, outbound-depart-time,
 outbound-arrive-in, outbound-arrive-time,
 outbound-airline, returning-depart-from,
 returning-depart-time, returning-arrive-in,
 returning-arrive-time, returning-airline)>

 <! ELEMENT outbound-depart-from (#PCDATA)>
 <! ELEMENT outbound-depart-time (EMPTY)>
 <! ATTLIST outbound-depart-time year CDATA #REQUIRED
 month CDATA #REQUIRED
 day CDATA #REQUIRED
 hour CDATA #REQUIRED
 minute CDATA #REQUIRED>
 <! ELEMENT outbound-arrive-in (#PCDATA)>
 <! ELEMENT outbound-arrive-time (EMPTY)>
 <! ATTLIST outbound-arrive-time year CDATA #REQUIRED
 month CDATA #REQUIRED
 day CDATA #REQUIRED
 hour CDATA #REQUIRED
 minute CDATA #REQUIRED>
 <! ELEMENT outbound-airline (EMPTY)>
 <! ATTLIST outbound-airline flightNum CDATA #REQUIRED
 carrierName (Alitalia | American | Delta |
 Northwest | Pacific |
 TWA | United) "American">
 <! ELEMENT returning-depart-from (#PCDATA)>
 <! ELEMENT returning-depart-time (EMPTY)>
 <! ATTLIST returning-depart-time year CDATA #REQUIRED
 month CDATA #REQUIRED
 day CDATA #REQUIRED
 hour CDATA #REQUIRED
 minute CDATA #REQUIRED>
 <! ELEMENT returning-arrive-in (#PCDATA)>
 <! ELEMENT returning-arrive-time (EMPTY)>
 <! ATTLIST returning-arrive-time year CDATA #REQUIRED
 month CDATA #REQUIRED
 day CDATA #REQUIRED
 hour CDATA #REQUIRED
 minute CDATA #REQUIRED>
 <! ELEMENT returning-airline (EMPTY)>
 <! ATTLIST returning-airline flightNum CDATA #REQUIRED
 carrierName (Alitalia | American | Delta |
 Northwest | Pacific |
 TWA | United) "American">

 <! ENTITY xt "Xtreme Travel">

Sample Files

To study this example in more detail, click on one of the following links:

flights.dtd
The DTD we built in this example

createdb.bat
An MS-DOS batch file that creates the DB2 database

flights.txt
File of comma-separated values that represent the sample database.

7 of 8 7/15/99 9:24 AM

Developers : XML : Library - Papers http://www.software.ibm.com/developer/library/buildappl/writedtd.html

Summary

This paper has covered the basics of creating a DTD. The most important part of this task is understanding the
structure of our source data and the data relationships we want our XML tags to convey. As mentioned earlier, the
XML tags we've created add semantic meaning and let us process our data in much more flexible ways. These
benefits will be more apparent as we continue to develop our XML application.

Step 2: Generating XML from a Data Store
Step 3: Converting XML into HTML with the Document Object Model (DOM)

Please send any comments or questions to:
Doug Tidwell
dtidwell@us.ibm.com

8 of 8 7/15/99 9:24 AM

Developers : XML : Library - Papers http://www.software.ibm.com/developer/library/buildappl/writedtd.html

